For a body starting off with an initial velocity of #vec u = 16hati + 12hatj m/s# and moving with a uniform acceleration of #vec a = -2.5hati m/s^2#, if after time 't' seconds the velocity #vec V# becomes perpendicular to it's initial velocity, then t= ?

A) 4sec
B) 4.8sec
C) 10sec
D) given condition is not possible

2 Answers
Sep 5, 2017

The answer is #=10s#, Option #(C)#

Explanation:

The initial velocity is #vecu= <16,12>#

The acceleration is #veca=<-2.5,0>#

We apply the equation of motion

#vecv=vecu + vecat#

Therefore,

#vecv=<16,12> + <-2.5,0>t = <16-2.5t, 12> #

As #vec v# is perpendicular to #vecu#, the dot product is #=0#

#vecu.vecv=<16,12> . <16-2.5t, 12> =16(16-2.5t)+12*12=0#

#256-40t+144=0#

#40t=256+144=400#

#t=400/40=10s#

Sep 5, 2017

# t = 10 s #, making (C) the correct solution.

Explanation:

The body moves with constant acceleration, so we can apply the vector equivalent of the "suvat" equations for motion under constant acceleration:

#{: (v=u+at, " where ", s="displacement "(m)), (s=ut+1/2at^2, , u="initial speed "(ms^-1)), (s=1/2(u+v)t, , v="final speed "(ms^-1)), (v^2=u^2+2as, , a="acceleration "(ms^-2)), (s=vt-1/2at^2, , t="time "(s)) :} #

Here we have:

# { (s=,,m),(u=,16bb(ul hati)+12bb(ul hat j),ms^-1),(v=,bb(vecV),ms^-1),(a=,-2.5bb(ul hat i),ms^-2),(t=,t,s) :} #

Applying #bb(ul v)=bb(ul u)+bb(ul a)t# we have:

# bb(vecV) = (16bb(ul hati)+12bb(ul hat j)) + (-2.5bb(ul hat i))t #
# \ \ \ \ = (16-2.5t)bb(ul hati)+12bb(ul hat j) #

If this velocity #bb(vecV)# at time #t# is perpendicular to the initial velocity #bb(vec u)=16bb(ul hati)+12bb(ul hat j)# then we have:

# bb(vecV) * bb(vec u) = 0 #

# :. (16bb(ul hati)+12bb(ul hat j)) * ((16-2.5t)bb(ul hati)+12bb(ul hat j) ) = 0 #

# :. (16)(16-2.5t) + (12)(12) = 0 #
# :. 16-2.5t + 9 = 0 #
# :. 2.5t = 25 #
# :. t = 10 \ s #