How do you multiply #(3q - 3) ( - q ^ { 2} + 2q + 4)#?

1 Answer
Sep 6, 2017

See a solution process below:

Explanation:

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

#(color(red)(3q) - color(red)(3))(color(blue)(-q^2 + color(blue)(2q) + color(blue)(4)))# becomes:

#-(color(red)(3q) xx color(blue)(q^2)) + (color(red)(3q) xx color(blue)(2q)) + (color(red)(3q) xx color(blue)(4)) + (color(red)(3) xx color(blue)(q^2)) - (color(red)(3) xx color(blue)(2q)) - (color(red)(3) xx color(blue)(4))#

#-3q^3 + 6q^2 + 12q + 3q^2 - 6q - 12#

We can now group and combine like terms:

#-3q^3 + 6q^2 + 3q^2 + 12q - 6q - 12#

#-3q^3 + (6 + 3)q^2 + (12 - 6)q - 12#

#-3q^3 + 9q^2 + 6q - 12#