How do you simplify #2/(x+3) + 3/(x^2+7x+12)#?
1 Answer
Sep 6, 2017
Explanation:
#"before we can add the fractions we require them to have"#
#"a "color(blue)"common denominator"#
#"factorise "x^2+7x+12#
#"the factors of 12 which sum to + 7 are + 3 and + 4"#
#rArrx^2+7x+12=(x+3)(x+4)#
#"we can now express the fractions as"#
#2/(x+3)+3/((x+3)(x+4))#
#"to obtain a common denominator multiply the"#
#"numerator/denominator of "2/(x+3)" by "(x+4)#
#rArr(2(x+4))/((x+3)(x+4))+3/((x+3)(x+4))#
#"we can now add the numerators leaving the denominator"#
#"as it is"#
#=(2x+8+3)/((x+3)(x+4))=(2x+11)/((x+3)(x+4))#