Laplace transforms... How do I go about getting #y#? #y''-2y'-3y=0#, #y(4)=-3#, #y'(4)=-17#
2 Answers
I assume
After taking Laplace transform both sides,
After taking inverse Laplace transformation both sides,
Now, I use
I differentiate both sides and apply
From these equations,
Thus,
Explanation:
1) I used Laplace transformation for
2) I solved
3) I applied inverse Laplace transformation for finding
4) I used
# y(t) = 2e^(4-t) - 5e^(3t-12) #
Explanation:
We have:
# y''-2y'-3y=0 # with#y(4)=-3, y'(4)=-17# ..... [A]
We note that this is a shifted value IVP so we cannot just take Laplace Transforms "as is", and we must perform a substitution to shift the initial conditions to that of an IVP.
We have initial conditions pivoting on
Let
# tau = t-4 => t = tau+4#
And#u(tau)=y(tau+4) => y(t) = u(t-4)#
Then substituting into the DE [A] we get:
# u''-2u'-3u=0 # with#u(0)=-3, u'(0)=-17# ..... [B]
We will need the following standard Laplace transform and inverses:
# {: (ul(f(t)=ℒ^(-1){F(s)}), ul(F(s)=ℒ{f(t)}), ul("Notes")), (f(t), F(s),), (f'(t), sF(s)-f(0),), (f''(t), s^2F(s)-s f(0)-s f'(0),), (e^(at), 1/(s-a),) :} #
We can now use this table to apply Laplace Transforms to [B]:
# ℒ \ {u''} - ℒ \ {2u'} -ℒ \ { 3u} = 0 #
# :. s^2U-su'(0)-u(0) - 2{sU-s(0)} -3U = 0# where#U(s)= ℒ \ {u(t)} #
# :. (s^2U+3s+17) - 2(sU+3) -3U = 0 #
# :. s^2U+3s+17 - 2sU-6 -3U = 0 #
# :. (s^2-2s-3)U + 3s+11 = 0 #
# :. (s-3)(s+1)U = -11-3s #
# :. U = (-11-3s)/((s-3)(s+1)) #
Now we decompose into partial fractions:
# (-11-3s)/((s-3)(s+1)) -= a/(s-3)+b/(s+1) #
# " " -= (a(s+1) +b(s-3))/((s-3)(s+1)) #
# :. -11-3s = a(s+1) +b(s-3) #
Put:
# s=3 => -20 = 4a => a=-5 #
# s=-1 => -8 = -4b => b=2 #
Thus:
# U(s) = -5/(s-3) +2/(s+1) #
And again using the above table we can now take inverse Laplace Transforms:
# u(tau) = -5e^(3tau) +2 e^(-tau) #
# \ \ \ \ \ \ = 2e^(-tau) - 5e^(3tau) #
And so, the solution we seek, after restoring the substitution is:
# y(t) = u(t-4) #
# \ \ \ \ \ \ = 2e^(-(t-4)) - 5e^(3(t-4)) #
# \ \ \ \ \ \ = 2e^(4-t) - 5e^(3t-12) #
Side Note
Although this demonstrates how to deal with a shifted data IVPs, it is in fact much easier to solve this DE using traditional methods rather than Laplace Transforms, viz:
The associated Auxiliary equation is:
# m^2-2m-3 = 0 => (m-3)(m+1) = 0 => m=-1,3#
Yielding a general solution of the homogeneous equation of the form:
# y = Ae^(-t) + Be^(3t) => y' = -Ae^(-t) + 3Be^(3t)#
And using the initial condition
# -3 = Ae^(-4) + Be^(12) # ..... [C]
# -17 = -Ae^(-4) + 3Be^(12)# ..... [D]
Solving Simultaneously, we get:
Eg [C]+ Eq [D]:
# -20 = 4Be^(12) => B = -5e^(-12)#
Subs
# -3 = Ae^(-4) -5e^12e^(-12) #
# :. Ae^(-4) = 5 - 3#
# :. Ae^(-4) = 2#
# :. A = 2e^(4)#
So the Particular Solution is:
# y = 2e^4e^(-t) -5e^(-12t)e^(3t) #
# \ \ \ = 2e^(4-t) -5e^(3t-12) # , as above