If the first term ,common ratio and the sum of first n terms of a G.P be a,r and Sn respectively, find the value of S1+S2+S3+...+Sn?
2 Answers
See below.
Explanation:
and
# S_1 + S_2 + ... + S_n = (an)/(1-r) - a(1-r^n)/(1-r)^2 #
Explanation:
If we have a GP with:
First Term:
# \ \ \ \ \ \ \ \ \ "= a" #
Common Ratio:# \ \ "= r" #
Number of terms:# "= n" #
Then the sum of the first
# S_n = a(1-r^n)/(1-r) #
The sum we seek is given by:
# T_n = sum_(r=1)^n S_r #
# \ \ \ \ = S_1 + S_2 + ... + S_n #
# \ \ \ \ = a(1-r^1)/(1-r) + a(1-r^2)/(1-r) + a(1-r^3)/(1-r) + ... + a(1-r^n)/(1-r)#
# \ \ \ \ = a{((1-r^1) + (1-r^2) + (1-r^3) + ... + (1-r^n))/(1-r)}#
# \ \ \ \ = a{( overbrace((1+1+...+1))^(n " terms") +overbrace((-r^1-r^2-...-r^n))^(n " terms") ) /(1-r)}#
# \ \ \ \ = a{( (1+1+...+1) - (r^1+r^2+r^3+...+r^n) ) /(1-r)}#
# \ \ \ \ = a{( n - (r^1+r^2+r^3+...+r^n) ) /(1-r)}#
# \ \ \ \ = (an)/(1-r) - {a(r^1+r^2+r^3+...+r^n)}/(1-r)#
# \ \ \ \ = (an)/(1-r) - S_n/(1-r)#
# \ \ \ \ = (an)/(1-r) - {a(1-r^n)/(1-r)}/(1-r)#
# \ \ \ \ = (an)/(1-r) - a(1-r^n)/(1-r)^2 #