First, factor the denominators of each fraction as:
#(x + 4)/(2(x + 5)) - 5/((x + 5)(x - 5))#
Next, multiply each fraction by the appropriate form of #1# to make the denominator #(2(x + 5)(x - 5))#
#[(x - 5)/(x - 5) xx (x + 4)/(2(x + 5))] - [2/2 xx 5/((x + 5)(x - 5))] =>#
#((x - 5)(x + 4))/(2(x + 5)(x - 5)) - (2 xx 5)/(2(x + 5)(x - 5)) =>#
#(x^2 - x - 20)/(2(x + 5)(x - 5)) - 10/(2(x + 5)(x - 5)) =>#
#(x^2 - x - 20)/(2(x + 5)(x - 5)) - 10/(2(x + 5)(x - 5))#
Then, we can subtract the numerators over the common denominator:
#(x^2 - x - 20 - 10)/(2(x + 5)(x - 5)) =>#
#(x^2 - x - 30)/(2(x + 5)(x - 5))#
Now, we can factor the numerator and simplify as:
#((x - 6)(x + 5))/(2(x + 5)(x - 5)) =>#
#((x - 6)color(red)(cancel(color(black)((x + 5)))))/(2color(red)(cancel(color(black)((x + 5))))(x - 5)) =>#
#(x - 6)/(2(x - 5))#
Or
#(x - 6)/(2x - 10)#