How do you combine #\frac { x + 4} { 2x + 10} - \frac { 5} { x^2 - 25}# into one term?

2 Answers
Sep 14, 2017

See a solution process below:

Explanation:

First, factor the denominators of each fraction as:

#(x + 4)/(2(x + 5)) - 5/((x + 5)(x - 5))#

Next, multiply each fraction by the appropriate form of #1# to make the denominator #(2(x + 5)(x - 5))#

#[(x - 5)/(x - 5) xx (x + 4)/(2(x + 5))] - [2/2 xx 5/((x + 5)(x - 5))] =>#

#((x - 5)(x + 4))/(2(x + 5)(x - 5)) - (2 xx 5)/(2(x + 5)(x - 5)) =>#

#(x^2 - x - 20)/(2(x + 5)(x - 5)) - 10/(2(x + 5)(x - 5)) =>#

#(x^2 - x - 20)/(2(x + 5)(x - 5)) - 10/(2(x + 5)(x - 5))#

Then, we can subtract the numerators over the common denominator:

#(x^2 - x - 20 - 10)/(2(x + 5)(x - 5)) =>#

#(x^2 - x - 30)/(2(x + 5)(x - 5))#

Now, we can factor the numerator and simplify as:

#((x - 6)(x + 5))/(2(x + 5)(x - 5)) =>#

#((x - 6)color(red)(cancel(color(black)((x + 5)))))/(2color(red)(cancel(color(black)((x + 5))))(x - 5)) =>#

#(x - 6)/(2(x - 5))#

Or

#(x - 6)/(2x - 10)#

Sep 14, 2017

#color(magenta)((x-6)/(2(x-5))#

Explanation:

#(x+4)/(2x+10)-5/(x^2-25)#

#:.=(x+4)/(2(x+5))-5/((x+5)(x-5))#

#:.=((x+4)(x-5)-2(5))/(2(x+5)(x-5))#

#:.=((x+4)(cancel(x-5))^color(magenta)1)/(2(x+5)(cancel(x-5))^color(magenta)1)-cancel10^color(magenta)5/(cancel2^color(magenta)1(x+5)(x-5))#

#:.=(x+4)/(2(x+5))-5/((x+5)(x-5))#

#:.=((x+4)(x-5)-2(5))/(2(x+5)(x-5))#

#:.=(x^2-x-20-10)/(2(x^2-25))#

#:.=(x^2-x-30)/(2(x^2-25))#

#:.=((cancel(x+5))^color(magenta)1(x-6))/(2(cancel(x+5))^color(magenta)1(x-5))#

#:.color(magenta)(=(x-6)/(2(x-5))#