How do you evaluate #\frac{10x}{108}=\frac{5}{9}#?

2 Answers
Sep 15, 2017

#x= 6#

Explanation:

#(10x)/108 = 5/9#
Cross multiply
#10x(9) = 108*5#
#90x = 540#
#x = 540/90#
#x=6#

I hope I helped!

Sep 15, 2017

See a solution process below:

Explanation:

Multiply each side of the equation by #color(red)(108)/color(blue)(10)# to solve for #x# while keeping the equation balanced:

#color(red)(108)/color(blue)(10) xx (10x)/108 = color(red)(108)/color(blue)(10) xx 5/9#

#cancel(color(red)(108))/cancel(color(blue)(10)) xx (color(blue)(cancel(color(black)(10)))x)/color(red)(cancel(color(black)(108))) = (cancel(color(red)(108))12)/(cancel(color(blue)(10))2) xx color(blue)(cancel(color(black)(5)))/color(red)(cancel(color(black)(9)))#

#x = 12/2#

#x = 6#