How do you find the square root of #x^4 - 4x^3 + 10x^2 - 12x +9# using the division method?

1 Answer
Sep 16, 2017

The answer is #=x^2-2x+3#

Explanation:

Let #y=x^2+bx+c#

Then,

#x^4-4x^3+10x^2-12x+9=(x^2+bx+c)^2#

Comparing the coefficients #c=3#

Therefore,

#x^4-4x^3+10x^2-12x+9=(x^2+bx+3)^2#

#=x^4+2(bx+3)x^2+(bx+3)^2#

#=x^4+2bx^3+6x^2+b^2x^2+6bx+9#

#=x^4+2bx^3+(6+b^2)x^2+6bx+9#

Comparing the coefficients,

#2b=-4#, #=>#, #b=-2#

The square root is #=x^2-2x+3#

LONG DIVISION METHOD

#color(white)(aaaaaaaaaaaaaaaaaa)##x^2-2x+3#

#color(white)(aaaaaaaaaaaaaaaaaa)###_________

#color(white)(aaaaaaaaaa)##x^2##color(white)(aaaaa)##|##x^4-4x^3+10x^2-12x+9#

#color(white)(aaaaaaaaaaaaaaaaa)##|## x^4#

#color(white)(aaaaaaaaaaaaaaaaa)##|#_________

#color(white)(aaaaaa)##2x^2-2x##color(white)(aaaa)##|##color(white)(aa)##-4x^3+10x^2-12x+9#

#color(white)(aaaaaaaaaaaa)####color(white)(aaaaa)##|##color(white)(aaa)##-4x^3+4x^2#

#color(white)(aaaaaaaaaaaaaaaaa)##|#_________

#color(white)(aaaa)##2x^2-4x+3##color(white)(aa)##|##color(white)(aaaaaaaaaaa)##6x^2-12x+9#

#color(white)(aaaaaaaaaaaaaaa)####color(white)(aa)##|##color(white)(aaaaaaaaaaa)##6x^2-12x+9#