How do you simplify #(x + 3) - ( \frac { 2x } { x - 5} )#?

1 Answer
Sep 18, 2017

#(x^2-4x-15)/(x-5)#

Explanation:

#(x+3)-(2x)/(x-5)#

#rArr(x+3)/1xx((x-5))/(x-5)-(2x)/(x-5)#

#=((x+3)(x-5))/(x-5)-(2x)/(x-5)#

#"we now have 2 fractions with a "color(blue)"common denominator"#

#"subtract the numerators leaving the denominator"#

#=((x+3)(x-5)-2x)/(x-5)#

#"wxpand the brackets using FOIL and collect like terms"#

#=(x^2-2x-15-2x)/(x-5)#

#=(x^2-4x-15)/(x-5)#