What is the Hessian for the function # f(x_1, fx_2) = (x_1 + x_2)^N #?
1 Answer
# | bb(H) f(x_1,x_2) | = 0 #
Explanation:
The function is dependant upon two variables, assuming that
# f(x_1, fx_2) = (x_1 + x_2)^N #
Then the first partial derivatives are:
# (partial f)/(partial x_1) = N(x_1+x_2)^(N-1) #
# (partial f)/(partial x_2) = N(x_1+x_2)^(N-1) #
Similarly, the second partial derivatives are:
# (partial^2 f)/(partial x_1^2) = N(N-1)(x_1+x_2)^(N-2) #
# (partial^2 f)/(partial x_2^2) = N(N-1)(x_1+x_2)^(N-2) #
(Note: In both cases the partial derivatives are the same due to the symmetry of the independent variables)
And the second partial cross derivatives are:
# (partial^2 f)/(partial x_1partial x_2) = N(N-1)(x_1+x_2)^(N-2) #
# (partial^2 f)/(partial x_2partial x_1) = N(N-1)(x_1+x_2)^(N-2) #
(Note: that the cross derivatives are identical due the the continuity of
Given these deviations, we then construct the Hessian Matrix.
# bb(H) f(x_1,x_2) = [ ((partial^2 f) / (partial x_1^2),(partial^2 f) / (partial x_1 partial x_2)), ((partial^2 f) / (partial x_2 partial x_2), (partial^2 f) / (partial x_2^2)) ] #
So the Hessian is:
# | bb(H) f(x_1,x_2) | = | ( N(N-1)(x_1+x_2)^(N-2), \ \ N(N-1)(x_1+x_2)^(N-2)) , (N(N-1)(x_1+x_2)^(N-2), \ \ N(N-1)(x_1+x_2)^(N-2)) | #
# \ \ \ = {N(N-1)(x_1+x_2)^(N-2)}^2 - {N(N-1)(x_1+x_2)^(N-2)}^2 #
# \ \ \ = 0 #