How do you prove that the limit of # (x^3*y^2)/(x^2+y^2)# as (x,y) approaches (0,0) using the epsilon delta proof?
1 Answer
See explanation
Explanation:
If we have a function
#lim_(x->c) f(x) = a" "# if and only if:
#AA epsilon > 0 EE delta > 0 : AA x in (c - delta, c + delta)" " abs(f(x) - a) < epsilon#
This can be generalised to a function from
#lim_((x, y) -> (c, d)) f(x, y) = a" "# if and only if:
#AA epsilon > 0 EE delta > 0 : AA x in (c - delta, c + delta) AA y in (d - delta, d + delta)" " abs(f(x, y) - a) < epsilon#
In our example:
#f(x, y) = (x^3y^2)/(x^2+y^2)#
#(c, d) = (0, 0)#
and we will prove that:
#lim_((x, y) -> (0, 0)) = 0#
Given any
Let:
#delta = { (sqrt(2) " if " epsilon > sqrt(2)), (epsilon " if " epsilon <= sqrt(2)) :}#
Let:
#x in (0 - delta, 0 + delta)#
#y in (0 - delta, 0 + delta)#
Then:
#x^2 < delta^2 <= 2#
#y^2 < delta^2 <= 2#
So:
#1/x^2+1/y^2 > 1/2+1/2 = 1#
So:
#1/(1/x^2+1/y^2) < 1#
Then:
If
If
#abs(f(x, y) - 0) = 0 < epsilon#
Otherwise:
#abs(f(x, y) - 0) = abs((x^3y^2)/(x^2+y^2))#
#color(white)(abs(f(x, y) - 0)) = abs(x)(x^2y^2)/(x^2+y^2)#
#color(white)(abs(f(x, y) - 0)) = abs(x)(1)/(1/y^2+1/x^2)#
#color(white)(abs(f(x, y) - 0)) < abs(x) < delta < epsilon#