So, we are trying to prove: #(2rsinxcosx)^2+r^2(cos^2x-sin^2x)^2=r^2#
We can ignore the right side of the equal sign. First, let's move the #r# outside the brackets or radicals.
#r^2(2sinxcosx)^2+r^2(cos^2x-sin^2x)^2#
#r^2((2sinxcosx)^2+(cos^2x-sin^2x)^2)#
Using the proof #cos^2x-sin^2x=cos(2x)##.^1#
#r^2((2sinxcosx)^2+(cos(2x))^2)#
#r^2((2sinxcosx)^2+cos^2(2x))#
Expand.
#r^2(4sin^2xcos^2x+cos^2(2x))#
Use the proof #cos(2x)=2cos^2x-1#
#r^2(4sin^2xcos^2x+(2cos^2x-1)^2)#
#r^2(4sin^2xcos^2x+4cos^4x-4cos^2x+1)#
Group #cosx#
#r^2(4cos^2x(sin^2x+cos^2x-1)+1)#
Use the proof #sin^2x+cos^2x=1#
#r^2(4cos^2x(1-1)+1)#
#r^2(4cos^2x(0)+1)#
#r^2(1)#
#r^2#
Comparing with the right side of the equal sign...
#r^2=r^2#.
And we're done!
Footnote 1: instead of substituting #cos^2x-sin^2x=cos(2x)# into #cos(2x)=2cos^2x-1#, you could go from #cos^2x-sin^2x# to #2cos^2x-1# without making the substitution.
#cos^2x-sin^2x#.
After rearranging the proof: #1=sin^2x+cos^2x -> -sin^2x=cos^2x-1# We can plug this in.
#cos^2x-cos^2x-1=2cos^2x-1#.