Question #12b6c

3 Answers
Sep 22, 2017

See the proof below

Explanation:

We use

#sin^2x+cos^2x=1#

#LHS=(2rsinxcosx)^2+r^2(cos^2 x-sin^2 x)^2#

#=(4r^2sin^2xcos^2x)+r^2(cos^2 x-sin^2 x)^2#

#=4r^2sin^2xcos^2x+r^2(cos^4x+sin^4x-2cos^2xsin^2x)#

#=r^2(cos^4x+sin^4 x+2sin^2xcos^2x)#

#=r^2(cos^2x+sin^2x)^2#

#=r^2#

#=RHS#

#QED#

Sep 22, 2017

#LHS=(2rsinxcosx)^2 + r^2 (cos^2x -sin^2x)^2#

#=(rsin2x)^2 + r^2 (cos2x)^2#

#=r^2(sin^2 2x + cos^2 2x)#

#=r^2=RHS#

Sep 22, 2017

This question has multiple steps, so skip ahead to the explanation.

Explanation:

So, we are trying to prove: #(2rsinxcosx)^2+r^2(cos^2x-sin^2x)^2=r^2#

We can ignore the right side of the equal sign. First, let's move the #r# outside the brackets or radicals.

#r^2(2sinxcosx)^2+r^2(cos^2x-sin^2x)^2#
#r^2((2sinxcosx)^2+(cos^2x-sin^2x)^2)#

Using the proof #cos^2x-sin^2x=cos(2x)##.^1#
#r^2((2sinxcosx)^2+(cos(2x))^2)#
#r^2((2sinxcosx)^2+cos^2(2x))#

Expand.
#r^2(4sin^2xcos^2x+cos^2(2x))#

Use the proof #cos(2x)=2cos^2x-1#
#r^2(4sin^2xcos^2x+(2cos^2x-1)^2)#
#r^2(4sin^2xcos^2x+4cos^4x-4cos^2x+1)#

Group #cosx#
#r^2(4cos^2x(sin^2x+cos^2x-1)+1)#

Use the proof #sin^2x+cos^2x=1#
#r^2(4cos^2x(1-1)+1)#
#r^2(4cos^2x(0)+1)#
#r^2(1)#
#r^2#

Comparing with the right side of the equal sign...
#r^2=r^2#.

And we're done!

Footnote 1: instead of substituting #cos^2x-sin^2x=cos(2x)# into #cos(2x)=2cos^2x-1#, you could go from #cos^2x-sin^2x# to #2cos^2x-1# without making the substitution.
#cos^2x-sin^2x#.

After rearranging the proof: #1=sin^2x+cos^2x -> -sin^2x=cos^2x-1# We can plug this in.

#cos^2x-cos^2x-1=2cos^2x-1#.