What is the equation of the normal line of #f(x)=(x-4)e^(x-2)# at #x=0#?

1 Answer
Sep 22, 2017

#y = 2.463x +0.5413#

Explanation:

Equation of the line will equal
#y-y_1 = m_2(x-x_1)#

Differentiate to find the gradient function using the product rule
#dy/dx = u(dv)/dx + v(du)/dx#

#u = x-4#
#(du)/dx = 1#

#v = e^(x-2)#
#(dv)/dx = e^(x-2)#

#dy/dx = (x-4)e^(x-2)+e^(x-2)#
#dy/dx = (x-4)e^(x-2)+e^(x-2)#
#dy/dx = xe^(x-2)-3e^(x-2) #

At #x=0#
#dy/dx = -3e^(-2) = m_1 #

The normal (#m_2#) is perpendicular to the tangent (#m_1 #) so:
#m_2 = (-1)/(m_1)#

#m_2 = (-1)/(-3e^(-2))#
#m_2 = (1)/(3e^(-2))#
#m_2 = 2.463#

At #x=0#,
#y = (0-4)e^(0-2)#
#y = (4)e^(-2)#
#y=0.5413#

So the equation of the normal to the curve at x=0 is,
#y-y_1 = m_2(x-x_1)#
#y-0.5413 = 2.463(x-0)#
#y = 2.463x +0.5413#