Oh, can someone finally help me solve this problem? Thank you!

enter image source here

1 Answer
Sep 24, 2017

#frac((a + 2)(a - 3))(a + 1);# #a ne - 1, 3, 5#

Explanation:

We have: #frac(a + 2)(a - 5) div frac(a + 1)(a^(2) - 8 a + 15)#

#= frac(a + 2)(a - 5) times frac(a^(2) - 8 a + 15)(a + 1)#

#= frac(a + 2)(a - 5) times frac(a^(2) - 3 a - 5 a + 15)(a + 1)#

#= frac(a + 2)(a - 5) times frac(a (a - 3) - 5 (a - 3))(a + 1)#

#= frac(a + 2)(a - 5) times frac((a - 3)(a - 5))(a + 1)#

#= frac((a + 2)(a - 3)(a - 5))((a + 1)(a - 5))#

#= frac((a + 2)(a - 3))(a + 1)#

Now, let's find the restricted values of #a#.

The denominators of the original expression contained #a - 5# and #a^(2) - 8 a + 15#, which factorised into #(a - 3)(a - 5)#.

These values cannot be equal to zero, i.e. #a ne 5# and #a ne 3, 5#.

Combining these results we get #a ne 3, 5#.

Also, in the last line, the denominator is #a + 1 ne 0#, or #a ne - 1#.

Therefore, the restricted values of #a# are #- 1, 3,# and #5#.