How do you solve this system of equations: #-8x - y = 14 and - 5x + y = 12#?
2 Answers
Explanation:
Equation 1:
Equation 2:
To solve these equation try to remove one variable.
equation 1 +equation 2
Substitute value of
Substituting value of
Explanation:
#-8x-y=14to(1)#
#-5x+y=12to(2)#
#"using the "color(blue)"substitution method"#
#"from "(2)" express y in terms of x"#
#rArry=12+5xto(3)#
#color(blue)"substitute "y=12+5x" into "(1)#
#-8x-(12+5x)=14#
#rArr-8x-12-5x=14#
#rArr-13x-12=14#
#"add 12 to both sides"#
#-13xcancel(-12)cancel(+12)=14+12#
#rArr-13x=26#
#"divide both sides by - 13"#
#(cancel(-13) x)/cancel(-13)=26/(-13)#
#rArrx=-2#
#"substitute this value into "(3)#
#rArry=12+(5xx-2)=12-10=2#
#rArr"point of intersection "=(-2,2)#
graph{(y-5x-12)(y+8x+14)((x+2)^2+(y-2)^2-0.04)=0 [-10, 10, -5, 5]}