We have matrix #A=[(2,x),(y,3)]# and #B=[(y,-3),(5,2x)]#, #A,BinMM_(2,2) (CC)#. How you find #x,y # such that #(A+xI_2)(B+yI_2)=[(-25,59),(2x+y^2,20)]# ?

1 Answer
Sep 24, 2017

Given: #A=[(2,x),(y,3)]# and #B=[(y,-3),(5,2x)]#

Compute #A+xI_2#:

#A+xI_2 = [(2,x),(y,3)] + x[(1,0),(0,1)]#

#A+xI_2 = [(2,x),(y,3)] + [(x,0),(0,x)]#

#A+xI_2 = [(2+x,x),(y,3+x)]" [1]"#

Compute #B+yI_2#

#B+yI_2 = [(y,-3),(5,2x)] + y[(1,0),(0,1)]#

#B+yI_2 = [(y,-3),(5,2x)] + [(y,0),(0,y)]#

#B+yI_2 = [(2y,-3),(5,2x+y)]" [2]"#

Substitute equation [1] and equation [2] into the given equation #(A+xI_2)(B+yI_2)=[(-25,59),(2x+y^2,20)]#:

#[(2+x,x),(y,3+x)][(2y,-3),(5,2x+y)]=[(-25,59),(2x+y^2,20)]#

Performing the multiplication:

#[(5x+2xy+2y,2x^2 +xy-3x-6),(2y^2+5x+15,2x^2+xy+6x)]=[(-25,59),(2x+y^2,20)]#

We have two unknown values and we have 4 equation from which we may chose; let's use the two equations in column 2:

#2x^2 +xy-3x-6 = 59" [3]"#
#2x^2+xy+6x = 20" [4]"#

Subtract equation [4] from equation [3]:

#-9x-6 = 39#

#-9x = 45#

#x = -5#

Substitute -5 for x into equation [4]:

#2(-5)^2-5y+6(-5) = 20#

#-5y = 0#

#y = 0#