What is L'Hôpital's rule used for?
1 Answer
L'Hôpital's rule is a really useful tool for evaluating limits of an indeterminate form
The theorem states that if we have a limit of an indeterminate form
# lim_(x rarr a) f(x)/g(x) = lim_(x rarr a) (f'(x))/(g'(x)) #
Providing the limit does actually exist.
Proof
A specific proof for the case
In this case,
# lim_(x rarr a) f(x)/g(x) = lim_(x rarr a) (f(x)-0)/(g(x)-0) #
# " " = lim_(x rarr a) (f(x)-f(a))/(g(x)-g(a)) #
# " " = lim_(x rarr a) ((f(x)-f(a))/(x-a)) / ((g(x)-g(a))/(x-a) #
# " " = (lim_(x rarr a) (f(x)-f(a))/(x-a)) / (lim_(x rarr a)(g(x)-g(a))/(x-a) #
# " " = (f'(a)) / (g'(a)) #
# " " = lim_(x rarr a) (f'(x)) / (g'(x)) # QED
Example
# L = lim_(x rarr 0) (e^x-1)/x #
If we put
# L = lim_(x rarr 0) (d/dx (e^x-1))/(d/dx x #
# \ \ = lim_(x rarr 0) (e^x)/1 #
# \ \ = lim_(x rarr 0) (e^x)/1 #
# \ \ = 1/1 #
# \ \ = 1 #