How to find #X# knowing that #X^2=((4,1),(0,4))#?
2 Answers
Explanation:
This question is asking something I have wondered about myself: How do you find a square root of a matrix?
Let's try it the naive way, just squaring a matrix then solving the resulting simultaneous equations:
Suppose:
#((4, 1), (0, 4)) = ((a, b), (c, d))((a, b), (c, d))#
#color(white)(((4, 1), (0, 4))) = ((a^2+bc, b(a+d)), (c(a+d), bc+d^2))#
Note that if we put
#a=+-sqrt(4) = +-2#
#d=+-sqrt(4) = +-2#
Let's choose
Then:
#b(a+d) = 1# and hence#b=1/4#
So a solution is:
#X = ((2, 1/4), (0, 2))#
Note that
Note that we cannot give
Explanation:
Here's another method using an interesting property of matrices.
Note that:
#((1, a), (0, 1))((1, b), (0, 1)) = ((1, a+b),(0, 1))#
Hence in particular we find:
#((1, a), (0, 1))^n = ((1, na), (0, 1))#
#((1, a), (0, 1))^2 = ((1, 2a), (0, 1))#
and we can define a "principal" square root:
#((1, a), (0, 1))^(1/2) = ((1, a/2), (0, 1))#
and non-principal square root:
#-((1, a), (0, 1))^(1/2) = -((1, a/2), (0, 1))#
So in our example:
#((4, 1), (0, 4))^(1/2) = (4 ((1, 1/4), (0, 1)))^(1/2) = 4^(1/2) ((1, 1/4), (0, 1))^(1/2) = 2 ((1, 1/8), (0, 1)) = ((2, 1/4), (0, 2))#
So our solutions for
#X = +-((2, 1/4), (0, 2))#