How do you evaluate #(x+3)(x^2 - 2x - 8)#?

1 Answer
Sep 29, 2017

#x^3+x^2-14x-24#

Explanation:

#"each term in the second bracket is multiplied by each"#
#"term in the first bracket"#

#rArr(color(red)(x+3))(x^2-2x-8)#

#=color(red)(x)(x^2-2x-8)color(red)(+3)(x^2-2x-8)#

#=(color(red)(x)xx x^2)+(color(red)(x)xx-2x)+(color(red)(x)xx-8)#

#color(white)(=)+(color(red)(3)xx x^2)+(color(red)(3)xx-2x)+(color(red)(3)xx-8)#

#=x^3+(-2x^2)+(-8x)+3x^2+(-6x)+(-24)#

#=x^3-2x^2-8x+3x^2-6x-24larrcolor(blue)" collect like terms"#

#=x^3+x^2-14x-24#