Value of #(log(x+h)-logx)/h# when #h->0#?
1 Answer
# lim_(h rarr 0) (ln(x+h)-lnx)/h = 1/x#
Explanation:
We seek:
# L = lim_(h rarr 0) (ln(x+h)-lnx)/h#
Method 1:
# L = lim_(h rarr 0) (ln((x+h)/x))/h#
# \ \ = lim_(h rarr 0) ln(1+h/x)/h#
Now, we can perform a substitution:
Let
#z=h/x# and we note that#z rarr 0# as#h rarr 0#
Then, we have:
# L = lim_(z rarr 0) ln(1+z)/(zx)#
# \ \ = lim_(z rarr 0) 1/x 1/x ln(1+z)#
# \ \ = 1/x \ lim_(z rarr 0) 1/z ln(1+z)#
# \ \ = 1/x \ lim_(z rarr 0) ln(1+z)^(1/z)#
Du to the monotonicity of the logarithmic function, we can change the limit to:
# \ \ = 1/x \ ln {lim_(z rarr 0) (1+z)^(1/z)}#
And we note that this is a standard limit , established by Leonhard Euler :
# lim_(z rarr 0) (1+z)^(1/z) = e #
Giving us:
# L = 1/x \ ln e#
# \ \ = 1/x #
Method 2:
If we compare the sought limit:
# L = lim_(h rarr 0) (ln(x+h)-lnx)/h#
With the limit definition of the derivative:
# f'(x) = lim_(h rarr 0) (f(x+h)-f(x))/h #
Then, we note that