How do you simplify #[(5-3) * (4-6)]^3 \div 8 + 3^4 \div 3^4 \div 3^2 - (2*3)^2 \div 12#?

2 Answers
Oct 1, 2017

See a solution process below:

Explanation:

Using the PEMDAS method, first execute all of the operations within Parenthesis:

#[(color(red)(5) - color(red)(3)) * (color(blue)(4) - color(blue)(6))]^3 -: 8 + 3^4 -: 3^4 -: 3^2 - (color(orange)(2) * color(orange)(3))^2 -: 12#

#[color(red)(2) * color(blue)(-2)]^3 -: 8 + 3^4 -: 3^4 -: 3^2 - 6^2 -: 12#

Next, execute the operation within the brackets which is another form of Parenthesis:

#(-4)^3 -: 8 + 3^4 -: 3^4 -: 3^2 - 6^2 -: 12#

Then execute the Exponent operations:

#(-4)^color(red)(3) -: 8 + 3^color(red)(4) -: 3^color(red)(4) -: 3^color(red)(2) - 6^2 -: 12#

#-64 -: 8 + 81 -: 81 -: 9 - 36 -: 12#

Next, execute the Division operations from left to right:

#(color(red)(-64) -: color(red)(8)) + ((color(blue)(81) -: color(blue)(81)) -: color(blue)(9)) - (color(orange)(36) -: color(orange)(12))#

#-color(red)(8) + (color(blue)(1) -: color(blue)(9)) - 3#

#-color(red)(8) + 1/9 - 3#

Now, execute the Addition and Subtraction from left to right:

#(9/9 xx -8) + 1/9 - 3#

#-72/9 + 1/9 - 3#

#-71/9 - 3#

#( -71/9) - (9/9 xx 3)#

#-71/9 - 27/9#

#-98/9#

If we want to write this as a mixed numbers we can convert as follows:

#-10 8/9#

Oct 1, 2017

#-10 8/9#

Explanation:

In an expression which has different operations, count the number of TERMS first. Terms are separated by #+ and -# signs

There are 3 terms in:

#color(red)([(5-3) * (4-6)]^3 \div 8)color(blue)( + 3^4 \div 3^4 \div 3^2)color(green)( - (2*3)^2 \div 12)#

Within each term, the order is

  • brackets
  • powers and roots
  • multiply and divide

#" "color(red)([(5-3) * (4-6)]^3 \div 8)color(blue)( + (3^4 \div 3^4) \div 3^2)color(green)( - (2*3)^2 \div 12)#
#color(white)(xxxx)darrcolor(white)(xxxxx)darrcolor(white)(xxxxxxxx)darrcolor(white)(xxxxxxxx)darr#
#=" "color(red)([(2) *" " (-2)]^3 \div 8)color(blue)( " "+ 1" " \div 3^2)color(green)( " "- (6)^2 \div 12)#
#color(white)(xxxxxxxx)darrcolor(white)(xxxxxxxxxxxxxxx)darrcolor(white)(xxxx)darr#
#=color(white)(xxxx)color(red)([(-4)]^3color(white)(xxx) \div 8)color(blue)( " "+ 1" " \div 9)color(green)( " "- 36 \div 12)#
#color(white)(xxxxxxxx)darrcolor(white)(xxxxxxxxxxxxxx)darrcolor(white)(xxxxxxxx)darr#
#=color(white)(xxxxx)color(red)(-64color(white)(xxxxx) \div 8)" "color(blue)( " "+ 1/9)color(white)(xxxxxx)color(green)(- 3)#
#color(white)(xxxxxxxxxxx)darrcolor(white)#
#=color(white)(xxxxxxxx)color(red)(-8)color(white)(xxxxx)" "color(blue)( " "+ 1/9)color(white)(xxxxxx)color(green)(- 3)#

Each term has been simplified to a single value.

Re-arrange with the positive terms at the beginning:

#=1/9-8-3#

#-10 8/9#