How do you completely factor #64m ^ { 2} - 100n ^ { 2} |#?

2 Answers
Oct 2, 2017

See a solution process below:

Explanation:

We can use this rule to factor the expression: #64m^2 - 100n^2#

#color(red)(x)^2 - color(blue)(y)^2 = (color(red)(x) + color(blue)(y))(color(red)(x) - color(blue)(y))#

If we let #color(red)(x)^2 = 64m^2# Then #color(red)(x) = 8m#

If we let #color(blue)(y)^2 = 100n^2# Then #color(blue)(y) = 10n#

Substituting these values into the formula gives:

#color(red)(64m)^2 - color(blue)(100n)^2 = (color(red)(8m) + color(blue)(10n))(color(red)(8m) - color(blue)(10n))#

Oct 2, 2017

#4(4m-5n)(4m+5n)#

Explanation:

#"take out a "color(blue)"common factor of 4"#

#rArr4(16m^2-25n^2)to(color(red)(A))#

#16m^2-25n^2" is a "color(blue)"difference of squares"#

#•color(white)(x)a^2-b^2=(a-b)(a+b)#

#(4m)^2=16m^2rArra=4m#

#(5n)^2=25n^2rArrb=5n#

#rArr16m^2-25n^2=(4m-5n)(4m+5n)#

#"returning to complete "(color(red)(A))#

#=4(4m-5n)(4m+5n)#