How do you simplify #\frac { 4} { \sqrt { 5} - 7}#?

2 Answers
Oct 4, 2017

See a solution process below:

Explanation:

We will simplify the expression by rationalizing the denominator, or, in other words, removing the radical from the denominator. We will multiply the expression by the appropriate form of #1# to eliminate the radical while keeping the value of the fraction the same:

#(sqrt(5) + 7)/(sqrt(5) + 7) xx 4/(sqrt(5) - 7) =>#

#(4(sqrt(5) + 7))/((sqrt(5) + 7)(sqrt(5) - 7)) =>#

#(4(sqrt(5) + 7))/((sqrt(5))^2 - 7sqrt(5) + 7sqrt(5) - 7^2) =>#

#(4(sqrt(5) + 7))/(5 - 0 - 49) =>#

#(4(sqrt(5) + 7))/(-44) =>#

#-(4(sqrt(5) + 7))/(4 xx 11) =>#

#-(color(red)(cancel(color(black)(4)))(sqrt(5) + 7))/(color(red)(cancel(color(black)(4))) xx 11) =>#

#-(sqrt(5) + 7)/11#

Oct 4, 2017

#-0.84# to the nearest 2 decimal places

Explanation:

#4/(sqrt5-7)#

#:.=4/(2.236067978-7)#

#:.=4/-4.763932023#

#:.=-0.839642543#

#:.=-0.84# to the nearest 2 decimal places