How to simplify the following? #2/(x(2x-3y))-3/(2x(x+4y))#

2 Answers
Oct 4, 2017

#(25y-2x)/(2x(2x-3y)(x+4y)#

Explanation:

#"before we can subtract the fractions they must have a "#
#color(blue)"common denominator"#

#"to achieve this "#

#• " multiply the numerator/denominator of "#

#2/(x(2x-3y))" by "2(x+4y)=2x+8y#

#• " multiply the numerator/denominator of "#

#3/(2x(x+4y))" by "(2x-3y)#

#rArr(2(2x+8y))/(2x(2x-3y)(x+4y))-(3(2x-3y))/(2x(2x-3y)(x+4y))#

#"we now have a common denominator and can subtract the"#
#"numerators leaving the denominator"#

#=(4x+16y-6x+9y)/(2x(2x-3y)(x+4y))#

#=(25y-2x)/(2x(2x-3y)(x+4y))#

Oct 4, 2017

#=(-2x+25y)/(2x(2x-3y)(x+4y))#

Explanation:

You are subtracting two fractions so you need the #LCD#

This will be #2x(2x-3y)(x+4y)#

Multiply each fraction by whatever factors are missing to form the common denominator.

#2/(x(2x-3y)) xx (2(x+4y))/(2(x+4y)) -3/(2x(x+4y))xx((2x-3y))/((2x-3y))#

#= (4(x+4y) -3(2x-3y))/(2x(2x-3y)(x+4y))#

#=(4x+16y-6x+9y)/(2x(2x-3y)(x+4y))#

#=(-2x+25y)/(2x(2x-3y)(x+4y))#