First, combine like terms on the left side of the equation:
#(-4 - 12)x - 27 = -1#
#-16x - 27 = -1#
Add #color(red)(27)# to each side of the equation to isolate the #x# term while keeping the equation balanced:
#-16x - 27 + color(red)(27) = -1 + color(red)(27)#
#-16x - 0 = 26#
#-16x = 26#
Now, divide each side of the equation by #color(red)(-16)# to solve for #x# while keeping the equation balanced:
#(-16x)/color(red)(-16) = 26/color(red)(-16)#
#(color(red)(cancel(color(black)(-16)))x)/cancel(color(red)(-16)) = (2 xx 13)/(color(red)(2 xx -8)#
#x = (color(red)(cancel(color(black)(2))) xx 13)/(color(red)(color(black)(cancel(color(red)(2))) xx -8)#
#x = -13/8#