How do you solve #6x ^ { 2} - 36= - 6x#?

1 Answer
Oct 9, 2017

See a solution process below: #x = -3# and #x = 2#

Explanation:

First, put the equation in standard form:

#6x^2 + color(6x) - 36 = -6x + color(6x)#

#6x^2 + 6x - 36 = 0#

We can now use the quadratic equation to solve this problem:

The quadratic formula states:

For #color(red)(a)x^2 + color(blue)(b)x + color(green)(c) = 0#, the values of #x# which are the solutions to the equation are given by:

#x = (-color(blue)(b) +- sqrt(color(blue)(b)^2 - (4color(red)(a)color(green)(c))))/(2 * color(red)(a))#

Substituting:

#color(red)(6)# for #color(red)(a)#

#color(blue)(6)# for #color(blue)(b)#

#color(green)(-36)# for #color(green)(c)# gives:

#x = (-color(blue)(6) +- sqrt(color(blue)(6)^2 - (4 * color(red)(6) * color(green)(-36))))/(2 * color(red)(6))#

#x = (-color(blue)(6) +- sqrt(36 - (-864)))/12#

#x = (-color(blue)(6) +- sqrt(36 + 864))/12#

#x = (-color(blue)(6) - sqrt(900))/12# and #x = (-color(blue)(6) + sqrt(900))/12#

#x = (-color(blue)(6) - 30)/12# and #x = (-color(blue)(6) + 30)/12#

#x = -36/12# and #x = 24/12#

#x = -3# and #x = 2#

Another way of solving this quadratic equation:

#6x^2+6x-36=0#

#(3x+9)(2x-4)=0#

#3x# must be -9 or #2x# must be 4 to end up with 0.

#3x=-9#
#x=-3#

#2x=4#
#x=2#

Therefor #x=-3# or #x=2#