How do you solve #4 1/6 = 3\frac { 1} { 3} c#?

1 Answer
Oct 10, 2017

See a solution process below:

Explanation:

First, convert the two mixed numbers to improper fractions:

#4 1/6 = 3 1/3c#

#4 + 1/6 = (3 + 1/3)c#

#[6/6 xx 4] + 1/6 = ([3/3 xx 3] + 1/3)c#

#24/6 + 1/6 = (9/3 + 1/3)c#

#25/6 = 10/3c#

Next, multiply each side of the equation by #color(red)(3)/color(blue)(10)# to solve for #c# while keeping the equation balanced:

#color(red)(3)/color(blue)(10) xx 25/6 = color(red)(3)/color(blue)(10) xx 10/3c#

#color(red)(3)/color(blue)(5 xx 2) xx (5 xx 5)/(3 xx 2) = cancel(color(red)(3))/cancel(color(blue)(10)) xx color(blue)(cancel(color(black)(10)))/color(red)(cancel(color(black)(3)))c#

#cancel(color(red)(3))/color(blue)(color(black)(cancel(color(blue)(5))) xx 2) xx (color(blue)(cancel(color(black)(5))) xx 5)/(color(red)(cancel(color(black)(3))) xx 2) = c#

#5/(2 xx 2) = c#

#5/4 = c#

#c = 5/4#

We can now convert this solution into a mixed number:

#c = (4 + 1)/4#

#c = 4/4 + 1/4#

#c = 1 + 1/4#

#c = 1 1/4#