What is the derivative of #5x arcsin(x)#?
1 Answer
Oct 12, 2017
Explanation:
#"differentiate using the "color(blue)"product rule"#
#"given "y=g(x)h(x)" then"#
#dy/dx=g(x)h'(x)+h(x)g'(x)larr" product rule"#
#g(x)=5xrArrg'(x)=5#
#h(x)=arcsinxrArrh'(x)=1/sqrt(1-x^2)#
#rArrd/dx(5xarcsinx)#
#=5x xx1/sqrt(1-x^2)+arcsinx xx5#
#=5arcsinx+(5x)/sqrt(1-x^2)#