So sum of roots #=(k+1)/k+(k+2)/(k+1)=-b/a.....[1]#
and product of roots #=(k+1)/kxx(k+2)/(k+1)=c/a#
#=>(k+2)/k =c/a....[2]#
From [2] we get
#1+2/k=c/a#
#=>2/k=c/a-1=(c-a)/a#
#=>k=(2a)/(c-a).....[3]#
Subtracting {1]from [2] we get
#(b+c)/a=(k+2)/k -(k+1)/k-(k+2)/(k+1)#
#=>(b+c)/a=1+2/k -1-1/k-1-1/(k+1)#
#=>(b+c)/a+1=1/k-1/(k+1)#
#=>(b+c+a)/a=1/(k(k+1))#
#=>(b+c+a)/a=1/((2a)/(c-a)((2a)/(c-a)+1))#
#=>(b+c+a)/a=(c-a)^2/(2a(c+a))#
#=>2(b+c+a)(c+a)=(c-a)^2#
#=>2b(c+a)+2(c+a)^2-(c-a)^2=0#
#=>2bc+2ab+(c+a)^2 +4ac=0#
#=>a^2+b^2+c^2+2bc+2ab+2ca =b^2-4ac#
#=>(a+b+c)^2=b^2-4ac#