How do you write #y-10=2(x-8)# in standard form?

1 Answer
Oct 17, 2017

See a solution process below:

Explanation:

The standard form of a linear equation is: #color(red)(A)x + color(blue)(B)y = color(green)(C)#

Where, if at all possible, #color(red)(A)#, #color(blue)(B)#, and #color(green)(C)#are integers, and A is non-negative, and, A, B, and C have no common factors other than 1

First, we can expand the terms on the right side of the equation:

#y - 10 = color(red)(2)(x - 8)#

#y - 10 = (color(red)(2) xx x) - (color(red)(2) xx 8)#

#y - 10 = 2x - 16#

Next, we can add #color(red)(10)# and subtract #color(blue)(2x)# from each side of the equation:

#-color(blue)(2x) + y - 10 + color(red)(10) = -color(blue)(2x) + 2x - 16 + color(red)(10)#

#-2x + y - 0 = 0 - 6#

#-2x + y = -6#

Now, multiply each side of the equation by #color(orange)(-1)#

#color(orange)(-1)(-2x + y) = color(orange)(-1) xx -6#

#(color(orange)(-1) xx -2x) + (color(orange)(-1) xx y) = 6#

#color(red)(2)x + (-color(blue)(y)) = color(green)(6)#

or

#color(red)(2)x - color(blue)(y) = color(green)(6)#