What is the general solution of the differential equation # x^2 (d^2y)/(dx^2) - 3x dy/dx+y=sin(logx)/x #?
1 Answer
# y = Ax^(2-sqrt(3)) + Bx^(2+sqrt(3)) + (5sinlnx)/(61x) + (6coslnx)/(61x) #
Explanation:
We have:
# x^2 (d^2y)/(dx^2) - 3x dy/dx+y=sin(logx)/x # ..... [A]
This is a Euler-Cauchy Equation (the power of
# x = e^t => xe^(-t)=1#
Then we have,
#dy/dx = e^(-t)dy/dt# , and,#(d^2y)/(dx^2)=((d^2y)/(dt^2)-dy/dt)e^(-2t)#
Substituting into the initial DE [A] we get:
# (e^t)^2 ((d^2y)/(dt^2)-dy/dt)e^(-2t) - 3(e^t) e^(-t)dy/dt+y=sin(loge^t)/((e^t)) #
# :. (d^2y)/(dt^2)-dy/dt - 3dy/dt+y = e^(-t)sint #
# :. (d^2y)/(dt^2) - 4dy/dt+y = e^(-t)sint # ..... [B]
This is now a second order linear non-Homogeneous Differentiation Equation. The standard approach is to find a solution,
Complementary Function
The associated homogeneous equation is:
# (d^2y)/(dt^2) - 4dy/dt+y = 0 # ..... [C]
Which has the Auxiliary Equation:
# m^2-4m+1 = 0#
We can solve this quadratic equation, and we get two distinct real solutions::
# m=2+-sqrt(3) #
Thus the Homogeneous equation [C] has the solution:
# y_c = Ae^((2-sqrt(3))t) + Be^((2+sqrt(3))t)#
Particular Solution
With this particular equation [B], a probably solution is of the form:
# y = ae^(-t)sint + be^(-t)cost #
# \ \ = e^(-t)(asint + bcost) #
Where
# y' \ \= e^(-t)(acost - bsint) - e^(-t)(asint + bcost) #
# \ \ \ \ \= e^(-t)( (a-b)cost - (a+b)sint ) #
# y'' = e^(-t)(-(a-b)sint - (a+b)cost ) - e^(-t)((a-b)cost - (a+b)sint ) #
# \ \ \ \ \ = e^(-t)(2bsint -2acost) #
Substituting into the Differential Equation
# e^(-t)(2bsint -2acost) - 4e^(-t)( (a-b)cost - (a+b)sint ) + e^(-t)(asint + bcost) = e^(-t)sint #
Equating coefficients of
#cos(x): -2a - 4(a-b) + b = 0 #
#sin(x): 2b +4 (a+b) + a = 1 #
Solving simultaneously we get:
# a=5/61 # and#b=6/61#
And so we form the Particular solution:
# y_p = 5/61e^(-t)sint + 6/61e^(-t)cost #
General Solution
Which then leads to the GS of [B}
# y(t) = y_c + y_p #
# \ \ \ \ \ \ \ = Ae^((2-sqrt(3))t) + Be^((2+sqrt(3))t) + 5/61e^(-t)sint + 6/61e^(-t)cost#
Now we initially used a change of variable:
# x = e^t => t=lnx #
So restoring this change of variable we get:
# y = Ae^((2-sqrt(3))lnx) + Be^((2+sqrt(3))lnx) + 5/61e^(-lnx)sinlnx + 6/61e^(-lnx)coslnx#
# :. y = Ax^(2-sqrt(3)) + Bx^(2+sqrt(3)) + 5/61e^(ln(1/x))sinlnx + 6/61e^(ln(1/x))coslnx#
# \ \ \ \ \ \ = Ax^(2-sqrt(3)) + Bx^(2+sqrt(3)) + 5/61 (1/x)sinlnx + 6/61 (1/x)coslnx #
# \ \ \ \ \ \ = Ax^(2-sqrt(3)) + Bx^(2+sqrt(3)) + (5sinlnx)/(61x) + (6coslnx)/(61x) #
Which is the General Solution of [A].