What is #lim_(x->1) (x^(1/3)-1)/(x^(1/4)-1)# ?
3 Answers
Explanation:
Using L'Hospital's rule:
Plugging in 1:
So:
Explanation:
Let
Then:
#lim_(x->1) (x^(1/3)-1)/(x^(1/4)-1) = lim_(t->1) (t^4-1)/(t^3-1)#
#color(white)(lim_(x->1) (x^(1/3)-1)/(x^(1/4)-1)) = lim_(t->1) (color(red)(cancel(color(black)((t-1))))(t^3+t^2+t+1))/(color(red)(cancel(color(black)((t-1))))(t^2+t+1))#
#color(white)(lim_(x->1) (x^(1/3)-1)/(x^(1/4)-1)) = lim_(t->1) (t^3+t^2+t+1)/(t^2+t+1)#
#color(white)(lim_(x->1) (x^(1/3)-1)/(x^(1/4)-1)) = 4/3#
graph{(y-(x^(1/3)-1)/(x^(1/4)-1))((x-1)^2+(y-4/3)^2-0.003) = 0 [-1.32, 3.68, -0.23, 2.27]}
Explanation:
Here is another way to solve the Problem, without using
L'Hospital's Rule.
We will use the following Standard Form of Limit :
Now, the Reqd. Lim.
Enjoy Maths.!