How do you evaluate #\frac { 1} { - \sqrt { 48} }#?

1 Answer
Oct 22, 2017

#1/(-sqrt(48)) = -sqrt(3)/12 ~~ -195/1351 ~~ -0.1443375#

Explanation:

Note that:

#48 = 4^2 * 3#

#sqrt(ab) = sqrt(a)sqrt(b)" "# if #a, b >= 0#

So we find:

#1/(-sqrt(48)) = -1/(sqrt(4^2 * 3))#

#color(white)(1/(-sqrt(48))) = -1/(sqrt(4^2) * sqrt(3))#

#color(white)(1/(-sqrt(48))) = -1/(4sqrt(3))#

#color(white)(1/(-sqrt(48))) = -sqrt(3)/(4sqrt(3)sqrt(3))#

#color(white)(1/(-sqrt(48))) = -sqrt(3)/12#

That is the simplest form.

This is an irrational number. To calculate rational approximations we can use:

#sqrt(a^2+b) = a+b/(2a+b/(2a+b/(2a+b/(2a+...))))#

with #a=7# and #b=-1#

as follows:

#sqrt(48) = sqrt(7^2-1) = 7-1/(14-1/(14-1/(14-1/(14-1/(14-...)))))#

So:

#1/(-sqrt(48)) = -1/(7-1/(14-1/(14-1/(14-1/(14-1/(14-...)))))#

#color(white)(1/(-sqrt(48))) ~~ -1/(7-1/(14-1/14)) = -1/(7-14/195) = -195/1351 ~~ -0.1443375#