How do you factor #2x ^ { 2} + 3x y + 5y ^ { 2}#?
1 Answer
Explanation:
Given:
#2x^2+3xy+5y^2#
Note that this homogeneous quadratic in
#ax^2+bxy+cy^2#
with
This has discriminant
#Delta = b^2-4ac#
#color(white)(Delta) = color(blue)(3)^2-4(color(blue)(2))(color(blue)(5))#
#color(white)(Delta) = 9-40#
#color(white)(Delta) = -31#
Since
It is still possible to factor it, but only with non-real complex coefficients.
We find:
#8(2x^2+3xy+5y^2) = 16x^2+24xy+40y^2#
#color(white)(8(2x^2+3xy+5y^2)) = (4x)^2+2(4x)(3y)+(3y)^2+31y^2#
#color(white)(8(2x^2+3xy+5y^2)) = (4x+3y)^2+(sqrt(31)y)^2#
#color(white)(8(2x^2+3xy+5y^2)) = (4x+3y)^2-(sqrt(31)iy)^2#
#color(white)(8(2x^2+3xy+5y^2)) = ((4x+3y)-sqrt(31)iy)((4x+3y)+sqrt(31)iy)#
#color(white)(8(2x^2+3xy+5y^2)) = (4x+(3-sqrt(31)i)y)(4x+(3+sqrt(31)i)y)#
So:
#2x^2+3xy+5y^2 = 1/8(4x+(3-sqrt(31)i)y)(4x+(3+sqrt(31)i)y)#