A capacitor of capacitance #100mu F#,a coil of resistence #120Omega# and inductance #100"mH"# are connected to an ac source of emf #e=30sin(100t)" V"#.Calculate the peak value of the current............?

1 Answer
Oct 23, 2017

#|I| = 0.2" A"#

Explanation:

The voltage in exponential form:

#V = |V|e^(i(omegat))#

Substitute #|V| = 30" V"# and #omega=100" rad/s"#

#V = (30" V")e^(i((100" rad/s")t))#

The formula for impedance in exponential form:

#Z = |Z|e^(itheta)#

#Z = sqrt((R)^2+ (omegaL-1/(omegaC))^2)e^(itan^-1((omegaL-1/(omegaC))/R))#

Substitute #R = 120Omega#, #omega = 100" rad/s"#, #L = 100xx10^-3" H"#, and #C = 100xx10^-6" F"#

#|Z | =sqrt((R)^2+ (omegaL-1/(omegaC))^2)#

#|Z| = sqrt((120)^2+(100(100xx10^-3)- 1/(100(100xx10^-6)))^2)#

#|Z| = 150Omega#

Because we want the peak value of the current, the phase angle does not really matter but, nevertheless, we shall compute it:

#theta = tan^-1((omegaL-1/(omegaC))/R)#

Substitute #R = 120Omega#, #omega = 100" rad/s"#, #L = 100xx10^-3" H"#, and #C = 100xx10^-6" F"#

#theta = tan^-1((100(100xx10^-3)-1/(100(100xx10^-6)))/120)#

#theta = -36.87^@#

The peak value of the current is the magnitude:

#|I| = |V|/|Z|#

#|I| = (30" V")/(150" "Omega)#

#|I| = 0.2" A"#