How do you expand this binomial using binomial theorem? #(2x+3)^10# Precalculus The Binomial Theorem The Binomial Theorem 1 Answer sankarankalyanam Oct 26, 2017 #(2x+3)^10 = (2x)^10 + 10C1 (2x)^9*3 + 10C2 (2x)^8*3^2 + 10C3 (2x)^7 * 3^3 + 10C4 (2x)^6 * 3^4 + 10C5 (2x)^5 * 3^5 + 10C6 (2x)^6*3^6 + 10C7 (2x)^7*3^7 + 10C8 (2x)^8*3^8 + 10C9 (2x)^9*3^9 + 3^10# Explanation: #(2x+3)^10 = (2x)^10 + 10C1 (2x)^9*3 + 10C2 (2x)^8*3^2 + 10C3 (2x)^7 * 3^3 + 10C4 (2x)^6 * 3^4 + 10C5 (2x)^5 * 3^5 + 10C6 (2x)^6*3^6 + 10C7 (2x)^7*3^7 + 10C8 (2x)^8*3^8 + 10C9 (2x)^9*3^9 + 3^10# Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 1701 views around the world You can reuse this answer Creative Commons License