How do you find the values of the other five trigonometric functions of the acute angle A with #cosA=2/sqrt10#?
2 Answers
Once you have
you can find
Explanation:
So, using Pythagoras:
You now have:
Explanation:
#"given A is acute, that is in first quadrant then all "#
#"trig. ratioswill be positive"#
#"using "sin^2A+cos^2A=1#
#rArrsin^2A=+-sqrt(1-sin^2A)#
#•color(white)(x)cosA=2/sqrt10#
#•color(white)(x)sinA=sqrt(1-(2/sqrt10)^2)#
#color(white)(xxxxxxx)=sqrt(1-4/10)=sqrt(3/5)=sqrt3/sqrt5=sqrt15/5#
#•color(white)(x)secA=1/cosA=sqrt10/2#
#•color(white)(x)cscA=1/sinA=5/sqrt15=sqrt15/3#
#•color(white)(x)tanA=sinA/cosA=sqrt15/5xxsqrt10/2=sqrt6/2#
#•color(white)(x)cotA=1/tanA=2/sqrt6=sqrt6/3#
#"All denominators have been rationalised"#