How do you use the binomial series to expand #(1+x)^-3#? Precalculus The Binomial Theorem The Binomial Theorem 1 Answer Binayaka C. Oct 29, 2017 #(1+x)^-3 = ( 1 + 3x+3x^2+x^3 )^-1# Explanation: #(1+x)^-3 = 1/(1+x)^3# Binomial theorem: #(a + b)^n =(nC_0) a^nb^0+ (nC_1) a^(n-1)b^1 +(nC_2) a^(n-2)b^2 +...... (nC_n)b^n# Here # (a=1 ; b=x , n= 3) :. 1^n=1 , x^0=1# We know #nC_r= (n!)/(r!(n-r)!) :. 3C_0=1 , 3C_1=3 , 3C_2=3 ,3C_3=1# #:. (1+x)^3= 1^3 + 3*1^2*x^1+3*1^1*x^2+1*1^0x^3 # or #:. (1+x)^3= 1 + 3x+3x^2+x^3 :.# #(1+x)^-3 = 1/(1+x)^3 = 1/( 1 + 3x+3x^2+x^3 )# or #(1+x)^-3 = ( 1 + 3x+3x^2+x^3 )^-1# [Ans] [Ans] Answer link Related questions What is the binomial theorem? How do I use the binomial theorem to expand #(d-4b)^3#? How do I use the the binomial theorem to expand #(t + w)^4#? How do I use the the binomial theorem to expand #(v - u)^6#? How do I use the binomial theorem to find the constant term? How do you find the coefficient of x^5 in the expansion of (2x+3)(x+1)^8? How do you find the coefficient of x^6 in the expansion of #(2x+3)^10#? How do you use the binomial series to expand #f(x)=1/(sqrt(1+x^2))#? How do you use the binomial series to expand #1 / (1+x)^4#? How do you use the binomial series to expand #f(x)=(1+x)^(1/3 )#? See all questions in The Binomial Theorem Impact of this question 8802 views around the world You can reuse this answer Creative Commons License