Proceed as follows
Our matrix is #A=((0,2,4),(1,3,3),(1,5,8))#
Write side by side #A# and #I#
#((0,2,4),(1,3,3),(1,5,8))((1,0,0),(0,1,0),(0,0,1))#
Perform the following row operations
#R1harrR3#
#((1,5,8),(1,3,3),(0,2,4))((0,0,1),(0,1,0),(1,0,0))#
#R2larrR2-R1#
#((1,5,8),(0,-2,-5),(0,2,4))((0,0,1),(0,1,-1),(1,0,0))#
#R3larrR3+R2#
#((1,5,8),(0,-2,-5),(0,0,-1))((0,0,1),(0,1,-1),(1,1,-1))#
#R3larr(R3)xx(-1)#
#((1,5,8),(0,-2,-5),(0,0,1))((0,0,1),(0,1,-1),(-1,-1,1))#
#R2larr(R2)xx(-1)#
#((1,5,8),(0,2,5),(0,0,1))((0,0,1),(0,-1,1),(-1,-1,1))#
#R2larr(R2)-5(R3)#
#((1,5,8),(0,2,0),(0,0,1))((0,0,1),(5,4,-4),(-1,-1,1))#
#R1larr(R1)-8(R3)#
#((1,5,0),(0,2,0),(0,0,1))((8,8,-7),(5,4,-4),(-1,-1,1))#
#R2larr(R2)/2#
#((1,5,0),(0,1,0),(0,0,1))((8,8,-7),(5/2,2,-2),(-1,-1,1))#
#R1larr(R1)-5(R2)#
#((1,0,0),(0,1,0),(0,0,1))((-9/2,-2,3),(5/2,2,-2),(-1,-1,1))#
Therefore,
#A^-1=((-9/2,-2,3),(5/2,2,-2),(-1,-1,1))#