How do you solve (16+ \frac { 878} { 26} ) ^ { 3t } = 2(16+87826)3t=2?

1 Answer
Nov 2, 2017

t=0.059131198t=0.059131198

Explanation:

(16+878/26)^(3t)=2(16+87826)3t=2

1) Using the law lnm^n=nlnmlnmn=nlnm, take the natural log (ln) of both sides of the equation to prevent the variable from being an exponent.
ln(16+878/26)^(3t)=ln(2)ln(16+87826)3t=ln(2)
(3t)ln(16+878/26)=ln(2)(3t)ln(16+87826)=ln(2)

2) Isolate tt.
(3t)=ln(2)/ln(16+878/26)(3t)=ln(2)ln(16+87826)
t=ln(2)/ln(16+878/26)*1/3t=ln(2)ln(16+87826)13

3) Solve using a calculator.
t=0.059131198t=0.059131198