How to solve? #(ln x)^2-2x=0#

1 Answer
Nov 2, 2017

See below.

Explanation:

We can solve this equation with the contribution of the so called Lambert function.

https://en.wikipedia.org/wiki/Lambert_W_function

We have

#log_e x = pmsqrt(2x) rArr x = e^(pmsqrt(2x))#

Considering first the option #x = e^sqrt(2x)#

#2x = 2 e^(sqrt(2x)) rArr sqrt(2x) = sqrt2 e^(1/2 sqrt(2x))# and

#1/2sqrt(2x) = 1/2sqrt2 e^(1/2 sqrt(2x)) rArr 1/2sqrt(2x) =1/sqrt2 e^(1/2 sqrt(2x))#

Now using the properties

#y = x e^x hArr x = W(y)# we have calling #z = 1/sqrt(2x)#

#z = 1/sqrt2 e^z rArr -ze^-z = -1/sqrt2# and then

#W(-1/sqrt2)=-z = -1/2sqrt(2x)# and finally

#x = 2 W(-1/sqrt2)^2 = -1.8070659157943643 - 2.4598345952311647i #

Considering now # x = e^-sqrt(2x)# we have correspondingly

#2x = 2 e^-sqrt(2x) rArr sqrt(2x) = sqrt2 e^(-1/2sqrt(2x))# and

#1/2 sqrt(2x) = 1/sqrt2 e^(-1/2sqrt(2x))# now calling #z = 1/2 sqrt(2x)#

follows #z e^z = 1/sqrt2 rArr z = 1/2 sqrt(2x) = W(1/sqrt2)# and finally

#x = 2 W(1/sqrt2)^2 approx 0.40608164979530725#