How do you evaluate #\frac { 5} { x - 3} - \frac { 10} { x + 3} = \frac { 7} { x ^ { 2} - 9}#?

1 Answer
Nov 4, 2017

#x=38/5#

Refer to the explanation for the process.

Explanation:

Simplify:

#5/(x-3)-10/(x+3)=7/(x^2-9)#

Simplify #x^2-9^2# using the difference of squares: #a^2-b^2=(a+b)(a-b)#

#x^2-3^2=(x+3)(x-3)#

Rewrite the expression.

#5/(x-3)-10/(x+3)=7/((x+3)(x-3))#

The least common denominator (LCD) for the fractions is #(x+3)(x-3)#. Multiply both sides by the LCD and cancel.

#(x+3)color(red)cancel(color(black)((x-3)))^1xx5/color(red)cancel(color(black)((x-3)))^1-color(red)cancel(color(black)((x+3)))^1(x-3)xx10/color(red)cancel(color(black)((x+3)))^1=color(red)cancel(color(black)((x+3)))^1color(red)cancel(color(black)((x-3)))^1xx7/(color(red)cancel(color(black)((x+3)))^1color(red)cancel(color(black)((x-3)))^1#

Simplify.

#5(x+3)-10(x-3)=7#

Expand.

#5x+15-10x+30=7#

Simplify.

#-5x+45=7#

Subtract #45# from both sides.

#-5x=7-45#

Simplify.

#-5x=-38#

Divide both sides by #-5#.

#x=-(38)/(-5)#

Two negatives make a positive.

#x=38/5