How do you solve #(x - 3) - 5x = - 3( x + 3)#?

2 Answers
Nov 7, 2017

By arranging the equation

Explanation:

Get rid of the parantheses:

#x-3-5x = -3x - 9#

#-4x - 3 = -3x -9#

#-4x + 3x = -9 + 3#

#-x = -6#

#x=6#

This is your answer #x=6#

Nov 7, 2017

#x=6#

Explanation:

#"distribute brackets on both sides of the equation"#

#x-3-5x=-3x-9#

#rArr-4x-3=-3x-9#

#"add 3x to both sides"#

#-4x+3x-3=cancel(-3x)cancel(+3x)-9#

#rArr-x-3=-9#

#"add 3 to both sides"#

#-xcancel(-3)cancel(+3)=-9+3#

#rArr-x=-6#

#"multiply both sides by "-1#

#rArrx=6#

#color(blue)"As a check"#

Substitute this value into the equation and if both sides are equal then it is the solution.

#"left "=6-3-(5xx6)=3-30=-27#

#"right "=-3(6+3)=-3xx9=-27#

#rArrx=6" is the solution"#