How do you prove #sin^-1(tanh(x)) = tan^-1(sinh(x))#?

1 Answer
Nov 10, 2017

The way that one proves an identity is to make substitutions to only one side until it is identical to the other side:

Explanation:

Given: #sin^-1(tanh(x)) = tan^-1(sinh(x))#

Use the property #u = sin^-1(sin(u))# on the right side and mark as equation [1]:

#sin^-1(tanh(x)) = sin^-1(sin(tan^-1(sinh(x)))" [1]"#

Digress and prove that #sin(tan^-1(sinh(x)) = tanh(x)#

An alternate form for #tan^-1(u) = i/2ln(1-iu)-i/2ln(1+iu)#

Substitute #sinh(x)# for u:

#tan^-1(sinh(x)) = i/2ln(1-isinh(x))-i/2ln(1+isinh(x))#

An alternate form for #sin(v) = i/2e^(-iv)-i/2e^(iv)#

#sin(tan^-1(sinh(x))) = i/2e^(-i(i/2ln(1-isinh(x))-i/2ln(1+isinh(x)))-i/2e^(i(i/2ln(1-isinh(x))-i/2ln(1+isinh(x))))#

Distribute through #-i#:

#sin(tan^-1(sinh(x))) = i/2e^((-i^2/2ln(1-isinh(x))+i^2/2ln(1+isinh(x))))-i/2e^(i(i/2ln(1-isinh(x))-i/2ln(1+isinh(x))))#

Distribute through #i#:

#sin(tan^-1(sinh(x))) = i/2e^((-i^2/2ln(1-isinh(x))+i^2/2ln(1+i(sinh(x))))-i/2e^((i^2/2ln(1-isinh(x))-i^2/2ln(1+isinh(x))))#

use the property #i^2 = -1#:

#sin(tan^-1(sinh(x))) = i/2e^((1/2ln(1-isinh(x))-1/2ln(1+isinh(x))))-i/2e^((-1/2ln(1-isinh(x))+1/2ln(1+isinh(x))))#

Write the #1/2# in the exponent as a square root:

#sin(tan^-1(sinh(x))) = i/2e^((ln(sqrt(1-isinh(x)))-ln(sqrt(1+isinh(x)))))-i/2e^((-ln(sqrt(1-isinh(x)))+ln(sqrt(1+isinh(x)))))#

Factor out #i/2#:

#sin(tan^-1(sinh(x))) = i/2{e^((ln(sqrt(1-isinh(x)))-ln(sqrt(1+isinh(x))))-e^((-ln(sqrt(1-isinh(x)))+ln(sqrt(1+isinh(x)))))}#

Use the property of logarithms #ln(a) - ln(b) = ln(a/b)#:

#sin(tan^-1(sinh(x))) = i/2{e^((ln((sqrt(1-isinh(x)))/(sqrt(1+isinh(x))))))-e^((ln((sqrt(1+isinh(x)))/(sqrt(1-isinh(x))))))}#

Use the property #e^ln(u) = u#:

#sin(tan^-1(sinh(x))) = i/2{(sqrt(1-isinh(x)))/(sqrt(1+isinh(x)))-(sqrt(1+isinh(x)))/(sqrt(1-isinh(x)))}#

When we make a common denominator we obtain:

#sin(tan^-1(sinh(x))) = i/2{(1-isinh(x))/(sqrt(1+sinh^2(x)))-(1+isinh(x))/(sqrt(1+sinh^2(x)))}#

Combine over the common denominator:

#sin(tan^-1(sinh(x))) = i/2{(-2isinh(x))/(sqrt(1+sinh^2(x)))}#

The leading coefficient multiplied into the numerator becomes 1:

#sin(tan^-1(sinh(x))) = sinh(x)/(sqrt(1+sinh^2(x)))#

Use the identity #1 + sinh^2(x) = cosh^2(x)#:

#sin(tan^-1(sinh(x))) = sinh(x)/(sqrt(cosh^2(x)))#

#sin(tan^-1(sinh(x))) = sinh(x)/cosh(x)#

#sin(tan^-1(sinh(x))) = tanh(x)#

Substitute this into equation [1]:

#sin^-1(tanh(x)) = sin^-1(tanh(x))# Q.E.D.