#"500.0 mL"# of solution contains #0.750# millimoles of #"Co"("NO"_3)_2#, #125.0# millimoles of #"NH"_3#, and #100.0# millimoles of ethylenediamine. What is the equilibrium concentration of #"Co"^(2+)# for this complexation reaction?

The #K_f# for the formation of #["Co"("NH"_3)_6]^(2+)# is #7.7 xx 10^4#. The #K_f# for the formation of #["Co"("en")_3]^(2+)# is #8.7 xx 10^13#.

1 Answer
Nov 10, 2017

Well, it ought to be close to zero...

I got #2.227 xx 10^(-10) "M"# by using natural logarithms. If you did it normally without logarithms, you may get #>10%# error.


The initial concentrations are:

#["Co"^(2+)]_i = 0.750/500.0 "mmol"/"mL" = "0.00150 M"#

#["NH"_3]_i = 125.0/500.0 "mmol"/"mL" = "0.2500 M"#

#["en"]_i = 100.0/500.0 "mmol"/"mL" = "0.2000 M"#

This has two "equilibria", so let us form a composite "equilibrium" constant:

#beta = K_(f1)K_(f2) = 7.7 xx 10^4 cdot 8.7 xx 10^13 = 6.7 xx 10^18#

This is for the following two reactions combined:

#"Co"^(2+)(aq) + 6"NH"_3(aq) -> ["Co"("NH"_3)_6]^(2+)(aq)#
#"Co"^(2+)(aq) + 3"en"(aq) -> ["Co"("en")_3]^(2+)(aq)#
#"-----------------------------------------------------------"#
#2"Co"^(2+)(aq) + 6"NH"_3(aq) + 3"en"(aq) -> ["Co"("NH"_3)_6]^(2+)(aq) + ["Co"("en")_3]^(2+)(aq)#

And so, the composite formation constant is:

#beta = 6.7 xx 10^18 = ([["Co"("NH"_3)_6]^(2+)][["Co"("en")_3]^(2+)])/(["Co"^(2+)]^2["NH"_3]^6["en"]^3)#

The changes in concentration from an ICE table would then be:

#Delta["Co"^(2+)] = -2x#
#Delta["NH"_3] = -6x#
#Delta["en"] = -3x#
#Delta[["Co"("NH"_3)_6]^(2+)] = x#
#Delta[["Co"("en")_3]^(2+)] = x#

This gives:

#6.7 xx 10^18 = (x^2)/((0.00150 - 2x)^2(0.2500 - 6x)^6(0.2000 - 3x)^3)#

This is nearly impossible to solve without approximations, but using Wolfram Alpha we can confirm that #2x ~~ "0.00150 M"#, i.e. that all the cobalt is gone, but that we already knew that.

One way to solve this accurately while keeping it feasible in a calculator is to take the #ln# of both sides.

#ln(6.7 xx 10^18) = 2lnx - 2ln(0.00150 - 2x) - 6ln(0.2500 - 6x) - 3ln(0.2000 - 3x)#

Since #2x ~~ 0.00150#, use that info to evaluate the logarithms that do not go to #pmoo#.

#43.349 ~~ -14.391 - 2ln(0.00150 - 2x) - (-8.427) - (-4.862)#

#~~ -1.102 - 2ln(0.00150 - 2x)#

Therefore,

#0.00150 - 2x ~~ e^(-22.2255)#

And #color(blue)(["Co"^(2+)] ~~ 2.227 xx 10^(-10)"M")#.