How do you solve #-5x^2-2x-4 = 0# ?
1 Answer
Nov 11, 2017
Explanation:
Complete the square, then use the difference of squares identity:
#a^2-b^2 = (a-b)(a+b)#
with
#0 = -5(-5x^2-2x-4)#
#color(white)(0) = 25x^2+10x+20#
#color(white)(0) = (5x)^2+2(5x)+1+19#
#color(white)(0) = (5x+1)^2+(sqrt(19))^2#
#color(white)(0) = (5x+1)^2-(sqrt(19)i)^2#
#color(white)(0) = ((5x+1)-sqrt(19)i)((5x+1)+sqrt(19)i)#
#color(white)(0) = (5x+1-sqrt(19)i)(5x+1+sqrt(19)i)#
Hence:
#5x = -1+-sqrt(19)i#
So:
#x = 1/5(-1+-sqrt(19)i)#