Why is #cosx=secx# an inconsistent equation?

1 Answer
Nov 11, 2017

Proof by counter-example, substituting a value for x.

Explanation:

#secx=1/cosx#

This means that we can write the above statement as:

#cosx=1/cosx#

This is quite easy to disprove.
Let #x=30^o#

#cos30^o=sqrt3/2#
#1/(cos30^o) =2/sqrt3#
(I can't be bothered to rationalize and I don't need to).

#2/sqrt3 != sqrt3/2 :. cos30^o!=1/(cos30^o), AAx inR#

However, some values of #x# do work.

By rearranging:
#cos^2x=1#
#cosx=+-sqrt(1)=+-1#

#x=arccos(1)=[(0^circ,360^circ,720^circ,cdots,n360^circ),(0, 2pi,4pi,cdots,2npi)]#, or
#x=arccos(-1)=[(180^circ,540^circ,900^circ,cdots,180^circ+n360^circ),(pi,3pi,5pi,cdots,pi+2npi)]#