How you calculate a It is possible to calculate #sqrt(2+3i)#? And if it is,how to calculate it?
1 Answer
Explanation:
Note that
We could express it using trigonometric functions, but let's try an algebraic approach...
Note that:
#((sqrt(2+3i))^2-2)^2 + 9 = 0#
That is,
#(x^2-2)^2+9 = 0#
Multiplied out this becomes:
#x^4-4x^2+13 = 0#
Note that:
#(a^2-kab+b^2)(a^2+kab+b^2) = a^4+(2-k^2)a^2b^2+b^4#
Putting
#(x^2-kroot(4)(13)x+sqrt(13))(x^2+kroot(4)(13)x+sqrt(13)) = x^4+(2-k^2)sqrt(13)x^2+13#
We want:
#(2-k^2)sqrt(13) = -4#
So:
#2sqrt(13)+4 = sqrt(13)k^2#
So:
#k^2 = (2sqrt(13)+4)/sqrt(13) = 2+(4sqrt(13))/13#
Let:
#k = sqrt(2+(4sqrt(13))/13)#
So:
#0 = x^4-4x+13#
#color(white)(0) = (x^2-sqrt(2+(4sqrt(13))/13)root(4)(13)x+sqrt(13))(x^2+sqrt(2+(4sqrt(13))/13)root(4)(13)x+sqrt(13))#
Hence, using the quadratic formula and picking the root in Q1, we find:
#sqrt(2+3i) = 1/2sqrt(2+4sqrt(13)/13)root(4)(13)+1/2sqrt((2+4sqrt(13)/13)sqrt(13)-4sqrt(13))#
#color(white)(sqrt(2+3i)) = 1/2sqrt(2sqrt(13)+4)+1/2sqrt(2sqrt(13)-4)i#