Question #cd675

2 Answers
Nov 16, 2017

#v(t) \equiv \frac{ds}{dt}; \qquad \int_{s(0)}^{s(t)}ds = \int_0^t v(t) dt#
#s(t) - s(0) = \int_0^t (40 - \sint) dt = 40t + [cos(t)]_0^t#
#s(t) = s(0) + 40t + (\cost - 1) = 1 + \cost + 40t#

Nov 16, 2017

The answer is
#s(t)=40t+cos(t)+1#

Explanation:

The position function is the intehral of the velocity function

#v(t)=40-sin(t)#

#s(t)=int(40-sin(t))dt=40t+cos(t)+C#

Plugging in the initial conditions, #s(0)=2#

Therefore,

#s(0)=40*0+cos(0)+C#

#2=1+C#

#C=1#

#s(t)=40t+cos(t)+1#