#5xy-4x^2-y^2# divided by #x+y# multiplied #y^2-x^2# divided #y^2-4xy#?

rational expression

1 Answer
Nov 18, 2017

#(5xy-4x^2-y^2)/(x+y) * (y^2-x^2)/(y^2-4xy) = -(x-y)^2/y#

with exclusions #x != -y# and #x != y/4#.

Explanation:

Given:

#(5xy-4x^2-y^2)/(x+y) * (y^2-x^2)/(y^2-4xy)#

Note that we can reverse the sign of both of the numerators to get:

#((4x^2-5xy+y^2)(x^2-y^2))/((x+y)(y^2-4xy)) = (((4x^2-xy)-(4xy-y^2))(x-y)color(red)(cancel(color(black)((x+y)))))/(color(red)(cancel(color(black)((x+y))))(y-4x)y)#

#color(white)(((4x^2-5xy+y^2)(x^2-y^2))/((x+y)(y^2-4xy))) = ((x(4x-y)-y(4x-y))(x-y))/((y-4x)y)#

#color(white)(((4x^2-5xy+y^2)(x^2-y^2))/((x+y)(y^2-4xy))) = ((x-y)(4x-y)(x-y))/((y-4x)y)#

#color(white)(((4x^2-5xy+y^2)(x^2-y^2))/((x+y)(y^2-4xy))) = -((x-y)color(red)(cancel(color(black)((4x-y))))(x-y))/(color(red)(cancel(color(black)((4x-y))))y)#

#color(white)(((4x^2-5xy+y^2)(x^2-y^2))/((x+y)(y^2-4xy))) = -(x-y)^2/y#

with exclusions #x != -y# and #x != y/4# due to the factors we have cancelled from the denominator.